К смежным сторонам параллелограмма с длина 18 см и 30 см проведены высоты. Длина меньшей из нх 6см. найдите длину большей высоты. Выбрать теретические факты из курса планиметрии. кторые необходимо повторить с учащимися перед решением данной задачи
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
ответ:решение первой задачи: введём обозначения: точка, из которой выходят две наклонные - Е первая (которая 24 см) пересекается с прямой в точке А вторая (которую надо найти) пересекается с прямой в точке В решение: опустим из точки Е на прямую перпендикуляр ЕР рассмотрим прямоугольный треугольник АРЕ в нём нам известна гипотенуза АЕ = 24 см и угол ЕАР = 45 градусов найдём катет ЕР через соотношение синуса: sin(ЕАР) = АЕ/ЕР sin(45) = 24/ЕР отсюда ЕР = 48/sqrt(2) (48 делить на корень из 2; sqrt - корень квадратный) теперь рассмотрим прямоугольный треугольник ВРЕ нам известен катет ЕР (только что нашли) , известен катет ВР = 18 см (из условия) надо найти гипотенузу ЕВ по теореме Пифагора: ЕВ^2=BP^2+EP^2 EB^2 = 18^2 + (48/sqrt(2))^2 отсюда ЕВ = sqrt(1476) это примерно = 38,42 с
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.