1. PABCD - правильная пирамида. PO_|_ (ABCD) РА=10 см, РО=8 см, <POA=90° ΔPOA. по теореме Пифагора: AO²=PA²-PO² AO²=10²-8², AO²=36, AO =6 см. ΔADC: AC=2AO, AC=12 см, AD=DC=a по теореме Пифагора: AO²=AD²+CD² 12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41 S бок.=24√41 см²
Ну тогда так: Раз площадь квадрата равна 36, тогда сторона квадрата равна 6 см.Диагонали квадрата пересекаются в центре квадрата. Опустим перпендикуляр из одной стороны каадрата на противоположную сторону так, чтобы он через точку пересечения диагоналей. Получилась фигура-прямоугольник так как все углы прямые. У прямоугольника противоположные стороны равны. А точка пересечения диагоналей делит сторону нашего прямоугольника пополам. Так как сторона равна 6 см, то перпендикуляр ( отрезок соединяющий точку пересечения диагоналей со стороной квадрата) будет равен половине стороны квадрата . 6:2=3 см Значит расстояние от точки пересечения диагоналей до построения( то есть самого квадрата) будет равно 3 си
ответ: 36,26 см.
Объяснение:
Решение.
R=a/√3 = 10/√3 см.
С=2πR = 2*3.14*10/√3= 62,8/√3≈36,26 см.