Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5
а) по следствию из теоремы синусов:
a / sin∠A = 2R
sin∠A = a / (2R) = 5/8
По значению синуса угол однозначно определить нельзя, он может быть как острым так и тупым, значит треугольник задан неоднозначно.
б) S = 1/2 · ab·sin∠C
sin∠C = 2S/(ab) = 24 / 30 = 4/5
По значению синуса угол однозначно определить нельзя, он может быть как острым так и тупым, значит треугольник задан неоднозначно.
в) по теореме косинусов:
АС² = BC² + AB² - 2·BC·AB·cos∠ABC
169 = BC² + 64 - 16 · BC · (-1/2)
BC² + 8·BC - 105 = 0
D = 64 + 420 = 484 = 22²
BC = (- 8 + 22)/2 = 7 или BC = (- 8 - 22)/2 = - 15 - не подходит по смыслу задачи
Так как третья сторона находится однозначно, то и треугольник задан однозначно.