P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Зовнішній кут дорівнює сумі двох внутрішніх кутів трикутника не суміжних з ним.
Сума кутів трикутника дорівнює 180 градусів.
З умови задачі слідує, що
кут А+кут В=11*р
кут В+кут С=12*р
кут А+кут С=13*р , де р - деяке число градусів
додавши ці три рівності отримаємо
2*(кут А+кут В+кут С)=(11+12+13)*р або
2*180 градусів=36р або
р=10 градусів
і
кут А+кут В=110 градусів
кут В+кут С=120 градусів
кут А+кут С=130 градусів
а значить
кут С=180-110=70 градусів
кут А=180-120=60 градусів
кут В=180-130=50 градусів
відповідь: 50 градусів, 60 градусів, 70 градусів