Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид: a^2 + a^2 = c^2 2 * a^2 = c^2 Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид: S = 1/2 * a * a = 1/2 * a^2 Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S Отсюда, подставляя имеющееся значение: c^2 = 4 * 50 = 200 c = корень из 200 = 2 * (корень из 10)
Если двугранные углы равны между собой (а это углы между высотами боковых граней и плоскостью основания), значит проекции этих высот на основание также равны и, следовательно, высота пирамиды D проецируется в точку О - центр вписанной в основание окружности. Площадь основания найдем по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, а,b, и с - стороны треугольника. S=√(16*6*6*4)=48. Радиус вписанной окружности найдем из формулы: S=p*r: r=S/p. В нашем случае r=48/16=3. Высоту пирамиды найдем из прямоугольного треугольника, образованного высотой пирамиды, радиусом вписанной окружности (катеты) и высотой грани. Острые углы этого треугольника равны 45° (дано), значит высота пирамиды равна радиусу. Тогда V=(1/3)So*h или V=(1/3)48*3=48.
Гипотенуза АВ треугольника АВ=АС/cosA=8/0,8=10
Второй катет ВС= √10²-8²=√36 = 6