Объяснение:
<А=<С=60' -как углы при основании АС равнобедренного ADC.
<ADC=<BDC=<ADC:2=100':2=50'
<DCA=90'
Обозначим пирамиду МАВС.
Боковые ребра пирамиды наклонены под одинаковым (45°) углом к плоскости основания.
Значит, их проекции равны радиусу описанной окружности правильного треугольника, а вершина пирамиды проецируется в центр О ее основания.
Боковые ребра с высотой пирамиды образуют равнобедренный прямоугольный треугольник .
В ∆ МАО угол МАО= 45° (по условию). Поэтому высота МО пирамиды равна радиусу АО описанной окружности.
Радиус описанной окружности находят по формуле R=а/√3
R=АО=12:√3=12√3:3=4√3
МО=АО=4√3
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение:
////////////////////////////////////