Нарисуем трапецию АВСD. Проведем ее среднюю линию КМ КМ=(АD+ВС):2=10 Средняя линия разделила исходную трапецию на две равнобедренные с равными высотами. Соединим концы стороны СD с серединой К боковой стороны АВ. Трапеция КВСМ - равнобедренная. Высота равнобедренной трапеции делит ее большее основание на два отрезка, больший из которых равен полусумме оснований. КО=(ВС+КМ):2=9 Средняя линия трапеции АВСD разделила ее высоту на два равных отрезка. СО=КН=7:2=3,5 Из прямоугольного треугольника КСО по т.Пифагора найдем СК - один из отрезков, соединяющих концы боковой стороны СD трапеции АВСD с серединой К другой боковой стороны АВ. СК=√ (СО²+ОК²)=√(12,25+81)=√93,25=0,5√ 373 Второй отрезок DК из треугольника КНD по т.Пифагора: DК=√(НДD²+КН²)=√(121+12,25)=0,5√533
Смотрите, всё довольно просто :) Объясню по моему чертежу. Мы рисуем отрезок АВ. Находим середину отрезка( для простоты и удобства, советую взять отрезок 4 см. Соответственно, 2 см и будет середина). У меня середина отрезка помечена зелёным цветом. Затем, ставим, где-нибудь рядом, точку М ( она красного цвета). Берём линейку, соединяем линейкой точку М и середину отрезка. Слабо проводим линию, чтобы она была немного дальше от середины. Отмеряем расстояние от точки М до середины отрезка. И отмечаем новую точку на этом расстоянии, от середины отрезка. Допустим F. Она и будет симметрична точке М
Відповідь:сторона 4 діагональ 6.
Пояснення: сама так решала. Только числа другие. Мне сказали что правельно) удачи тебе)