усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60
Все этапы построения показаны на рисунках приложения.
Этап 1) Вне прямой а отмечаем точку О.
Из О на прямой а с циркуля произвольного традиуса отмечаем точки 1 и 2.
Из этих точек, как из центров, проводим две окружности так, чтобы они пересеклись по разные стороны от прямой а. Соединим точки пересечения окружностей прямой. Точку пересечения этой прямой с прямой а обозначим 3.
–––––
Этап 2) Из т.О радиусом, равным длине отрезка О3, проведем окружность.
Из т.3 тем же радиусом на проведенной окружности отметим точку 4. Стороны треугольника 4О3 равны радиусу, он - равносторонний, поэтому угол 4О3=60°
––––––––––
Этап 3) Продлим радиус О4 (удобно продлить на его длину) и отметим точку 5. Для данной задачи точка 5 будет лежать на прямой а, т.к. в прямоугольном ∆ 3О5 с острым углом при т.О=60° гипотенуза О5 равна двум радиусам ( двум катетам О3).
Общепринятым построения перпендикуляра к прямой проведем прямую, проходящую через т.4 и перпендикулярную к отрезку О5 (чертим окружности с центрами в т.О и т.5, точки их пересечения 6 и 7 соединяем). Отмечаем прямую а1. Она перпендикулярна радиусу О4 и повёрнута вокруг т.О на 60° по часовой стрелке.