8√3
Объяснение:
MA = MB = MC = MD, значит М - центр описанной около четырехугольника окружности.
Если четырехугольник вписан в окружность, то суммы противолежащих углов равны 180°.
∠А = 180° - ∠С = 180° - 95° = 85°
∠D = 180° - ∠B = 180° - 115° = 65°
ΔАВМ равнобедренный, значит углы при основании АВ равны, ⇒
∠АМВ = 180° - 2∠А = 180° - 2 · 85° = 180° - 170° = 10°
ΔMCD равнобедренный, значит углы при основании CD равны, ⇒
∠CМD = 180° - 2∠D = 180° - 2 · 65° = 180° - 130° = 50°
∠ВМС = 180° - (∠АМВ + ∠CМD) = 180° - 60° = 120°
ΔВМС: по теореме косинусов:
BC² = MB² + MC² - 2·MB·MC·cos120°
144 = r² + r² - 2 · r · r · (-1/2)
144 = 2r² + r²
3r² = 144
r² = 48
r = 4√3
AD = 2r = 8√3
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²
ответ: 3) В
4) В
Объяснение: