Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
b = 2 (см) ;
h =1,2 (см) . * * * h =h₃ = h(c) разные обозначения * * *
(CH ⊥ AB )
p =(a+b+c) - ?
Вариант 1: ∠B < 90°.
c = c₁ +c₂ =√(a² - h²) +√(b² - h²) = √(1,5² - 1,2²) +√(2² - 1,2²) =√0,81 +√2,56 =
0,9 +1,6 =2,5 (см) .
P =a+b+c = 1,2 +1,5 +2,5 = 5,2 (см).
Вариант 2:
Угол B тупой : B > 90° если b² >a² +c²
Высота опускается на продолжения стороны с.
Тогда
c = c₂ - c₁ =√(b² - h²) -√(a² - h²) = √(2² - 1,2²) -√(1,5² - 1,2²) =1,6 -0,9 = 0,7
0,9 +1,6 =2,5 (см) .
P =a+b+c = 1,2 +1,5 +0,7 =3,4 (см ).
ответ : .5,2 см или 3, 4 см .
* * * * * * *
c₁ =a(c) = √(1,5² - 1,2²) = √(1,5 -1,2)(1,5+1.2)= √(0,3*0,3 *9) =0,3* 3 =0,9 ;
c₂ = b(c) =√(2² - 1,2² ) =√(2-1,2)(2+1,2) = √(0,8*0,8*4) =08*2 =1,6.
где a(c) и b(c) проекции сторон a и b на стороне