М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
эльза182
эльза182
02.01.2023 10:03 •  Геометрия

Радіус конуса дорівнює 9 см, а твірна 15 см. Ви- значте об'єм конуса.
А 405л см3
В 324 см3
Б 720 см3
г 270 см3​

👇
Открыть все ответы
Ответ:
маняня4
маняня4
02.01.2023
Дано: сторона основания а = 8 см, угол наклона бокового ребра к плоскости основания α = 30°.

Находим высоту h основания:
h = a*cos30° = 8√3/2 = 4√3 см.
Проекция бокового ребра на основание равна:
 (2/3)*h = (2/3)*(4√3) = 8√3/3 см.
Высота Н пирамиды равна: 
Н = ((2/3)*h)*tgα = (8√3/3)*√3 = 8 см.
Площадь So основания равна
So = a²√3/4 = 8²√3/4 = 64√3/4 = 16√3 ≈  27,71281 см².
Периметр основания Р = 3а = 3*8 = 24 см.
Находим апофему А, проекция которой на основание равна (1/3)h.
(1/3)h = (1/3)*(4√3) = 4√3/3 см.
A = √(H² +( (1/3)h)²) = √(8² + (4√3/3)²) = √(64 + (48/9)) =
 = √(624/9) = 4√39/3 ≈  8,326664 см.
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*24*( 4√39/3) = 16√39 ≈ 99,91997 см².
Площадь S полной поверхности пирамиды равна:
S = So + Sбок = (16√3) + (16√39) =  16(√3 + √39) ≈ 127,6328 см².
Объём пирамиды равен:
V = (1/3)So*H = (1/3)*(16√3)*8 = (128√3/3) ≈ 73,90083 см³.
4,8(30 оценок)
Ответ:
konon707
konon707
02.01.2023

а) Найдем точку пересечения асимптот: (центр гиперболы)

2у - 3х = 7

2у + 3х = 1   Сложим и получим 4у = 8  у = 2  х = - 1.

О(-1; 2) - центр гиперболы. Каноническое уравнение скорректируется:

(х+1)^2 / a^2   -   (y-2)^2 /b^2 = 1.

Найдем а^2 и b^2.

Уравнение данного эллипса:

x^2 /3  + y^2 /7 = 1

Эллипс вытянут вдоль оси У и фокусы расположены на оси У на расстоянии:

Кор(7-3) = 2  от начала координат. Берем верхний фокус (0; 2), видим что он расположен на одном расстоянии от оси Х, как и центр гиперболы.

Пусть (0; 2) - правый фокус гиперболы. Расстояние до центра гиперболы равно 1.

a^2 + b^2 = 1

Еще одно уравнение для а и b получим из углового коэффициента асимптот. b/a = 3/2 ( 3/2 получится если в уравнении асимптоты выразить у через х). Итак имеем систему:

a^2 + b^2 = 1     13a^2/4 = 1       a^2 = 4/13 

b/a = 3/2           b = 3a/2            b^2 = 9/13

Уравнение гиперболы:

13(x+1)^2 /4  -  13(y-2)^2 /9  = 1

б) Левый фокус гиперболы находится в т.(-2; 2), правый фокус -

в т. (0; 2).

Значит вершина параболы смещена на 2 относительно начала координат по оси У. Каноническое уравнение будет иметь вид:

(y-2)^2 = -2px   (ветви влево!)

F = p/2 = 2  Отсюда  p = 4

(y-2)^2 = -4x

4,7(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ