4 и 4
Объяснение:
По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник. Обозначим его вершины К, L, M и N.
Биссектрисы параллелограмма, являясь секущими, отсекают от него равнобедренные треугольники ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>
АВ=BQ=AT=CD=CR=DS=8 Тогда ВR=12-CR=4. Аналогично длина отрезков QC,, DT,, AS равна 4.
Отрезки QR и TS равны 12-2•4=4.
По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.
В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND
Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD, а BR║TD как лежащие на параллельных сторонах ABCD.
Из доказанного выше BL=RN. ⇒ BL=RN. ⇒
Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4
LN - диагональ прямоугольника KLMN. Диагонали прямоугольника равны.
КМ=LN=4 (ед. длины)
AB_1=x, AB=y. Тогда AC_1=kx, AC=ky, B_1C=|ky-x|, C_B= |y-kx| (модуль написан из-за того, что основание высоты может лежать не на стороне, а на ее продолжении).
Теорема Пифагора:
С_2С_1^2=a^2-k^2*x^2, C_2B=(y-kx)^2+(a^2-k^2*x^2)=y^2-2kxy+a^2;
B_2B_1^2=a^2-x^2, B_2C=(ky-x)^2+(a^2-*x^2)=k^2*y^2-2kxy+a^2.
Теперь теорема косинусов для
1. треугольника ABC_2:
y^2=a^2+y^2-2kxy+a^2-2a*корень(y^2-2kxy+a^2)*cos(AC_2B),
a^2-kxy=a*корень(y^2-2kxy+a^2)*cos(AC_2B);
2. треугольника ACB_2:
a^2-kxy=a*корень(k^2*y^2-2kxy+a^2)*cos(AB_2C).
Тогда
корень(y^2-2kxy+a^2)*cos(AC_2B)=корень(k^2*y^2-2kxy+a^2)*cos(AB_2C)
и если углы равны, но не прямые, то k=1, т.е. треугольник равнобедренный.
Если треугольник не равнобедренный и углы не прямые, то из сформулированного условия следует, что
АВ_2 не равно АС_2
ВСА-60 градусов
АВС-60 градусов