1. Боковая поверхность усечённого конуса находится по формуле:S=πL(r+R), где L - образующая, а r и R - радиусы оснований. 2. Из условия можно найти, что 120π=10π(r+R), откуда r+R=12. 3. В сечении такой конус представляет из себя равнобедренную трапецию, разделённую пополам (вертикально) высотой конуса, которая по условию равна 8. Одна половина представляет из себя прямоугольную трапецию, в которой высота равна 8, боковая сторона 10, а r и R- основания. 4. Из прямоугольной трапеции по т. Пифагора можно найти разность R-r. Она равна 6. Тогда, зная, что r+R=12 и R-r=6, находим, что r=3, а R=9
Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.