М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sasha2054
sasha2054
12.07.2021 20:54 •  Геометрия

Знайти косинус кута А трикутника АВС, якщо А(-3; 2), В(5; 3), С(-4; -3).​

👇
Открыть все ответы
Ответ:
TheWalkingDeadTWD
TheWalkingDeadTWD
12.07.2021

В таких заданиях в основном ведётся работа с формулами. Прежде, чем притупить к заданям, вспомним формулу основного тригоносетрического тождества, которая в основном тут и будет использоваться:

{ \sin }^{2} \alpha + { \cos}^{2} \alpha = 1

1) Если мы воспользуемся основным тригоносетрическим тождеством, выразив оттуда косинус в квадрате, то получим как раз таки это выражение, значит его можно упростить так:

1) \: 1 - { \sin }^{2} \alpha = { \cos}^{2} \alpha

2) Аналогично предыдущему, тоже опираясь на основное тригоносетрическое тождество, получим:

2) \: 1 - { \cos}^{2} \alpha = { \sin }^{2} a

3) Это выражение для начала можно сложить по формуле разности квадратов, после чего преобразуем полученное выражение так же, как и во втором:

3) \: (1 - \cos\alpha )(1 + \cos \alpha ) = 1 - { \cos }^{2} \alpha = { \sin }^{2} \alpha

4) Опять же, опираясь на основное тригоносетрическое тождество можно синус в квадрате плюс косинус в квадрате заменить на единицу, в результате чего мы получим:

4) \: 1 + { \sin}^{2} \alpha + { \cos}^{2} \alpha = 1 + 1 = 2

5) Вынесем за скобку синус, а полученное выражение преубразуем, опять же, как во втором пункте:

5) \: \sin \alpha - \sin \alpha \times { \cos }^{2} \alpha = \sin \alpha (1 - { \cos }^{2} \alpha ) = \sin \alpha \times { \sin }^{2} \alpha = { \sin }^{3} \alpha

4,8(68 оценок)
Ответ:
Улынись678
Улынись678
12.07.2021

а) BC1 || AD1, поэтому угол между прямыми AB1 и BC1 равен углу между AB1 и AD1.


ребро куба равно а, поэтому (так как грани куба - квадраты), то AB1=AD1=B1D1, а значит треугольник AB1D1 - правильный(равносторонний),

углы равностороннего треугольника равны 60 градусов,

значит искомый угол между прямыми AB1 и BC1 равен 60 градусов


б)   так как В1С1 - перпендикуляр с точки С1 на грань АА1В1В, то угол между прямой AC1 и гранью AA1B1B равен углу В1АС1

(треугольник АВ1С1 - прямоугольным с прямым углом АВ1С1)

по свойству диагонали квадрата AB_1=a*\sqrt{2}

по свойству диагонали куба AC_1=a*\sqrt{3}


cos (B_1AC_1)=\frac{AB_1}{AC_1}=\frac{a\sqrt{2}}{a\sqrt{3}}=\sqrt{\frac{2}{3}}

угол В1АС1 равен  arccos корень(2/3)т.е.

угол между прямой AC1 и гранью AA1B1B равен  arccos корень(2/3) градусов


4,6(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ