Если в четырехугольник можно вписать окружность, то суммы противоположных сторон равны. (Если не в курсе, откуда это берется - отрезки касательных из одной точки до точки касания окружности равны, дальше просто все складывается :))
Поэтому в равнобедренной трапеции боковая сторона будет (54 + 24)/2 = 39.
Высота найдется из треугольника, образованного боковой стороной и частью основания - опускаем препендикуляр из вершины малого на большое основание.
Катеты этого треугольника Н и (54 - 24)/2 = 15, гипотенуза 39. Ну, дальше по Теореме Пифагора :))
Н^2 = 39^2 - 15^2 = 36^2;
H = 36.
Кто запоминает Пифагоровы тройки, сразу бы дал ответ - стороны этого треугольника - утроенные числа (5 12 13).
Отрезок КС - наклонная, КО - перпендикуляр. КD и СА - параллельны по условию. КС - секущая при параллельных прямых. ⇒накрестлежащие ∠DКС и ∠КСА равны. Равны при параллельных прямых KD и AC и секущей МА и соответственные ∠МКD и ∠КАС Углы при АС равны между собой как половины угла МКС, и треугольник АКС - равнобедренный (по свойству). КА=КС Теорема: Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой. КО < КС. ⇒ КA > KO
Если в четырехугольник можно вписать окружность, то суммы противоположных сторон равны. (Если не в курсе, откуда это берется - отрезки касательных из одной точки до точки касания окружности равны, дальше просто все складывается :))
Поэтому в равнобедренной трапеции боковая сторона будет (54 + 24)/2 = 39.
Высота найдется из треугольника, образованного боковой стороной и частью основания - опускаем препендикуляр из вершины малого на большое основание.
Катеты этого треугольника Н и (54 - 24)/2 = 15, гипотенуза 39. Ну, дальше по Теореме Пифагора :))
Н^2 = 39^2 - 15^2 = 36^2;
H = 36.
Кто запоминает Пифагоровы тройки, сразу бы дал ответ - стороны этого треугольника - утроенные числа (5 12 13).