ΔAOD - равнобедренный => AO=DO
∠BAC=∠CDB
ΔBAO имеет общую сторону с ΔAOD
ΔCOD имеет общую сторону с ΔAOD
Следовательно ΔBAO и ΔCOD имеют AO=DO
Рассматриваемые треугольники соприкасаются с боковыми сторонами треугольника и имеют равный угол отклонения от них ∠BAO=∠CDO
Из чего можно сделать вывод, что ∠BOA=∠CОD.
Т.к. в ΔBAO и ΔCOD:
1)AO и OD выступают боковыми сторонами равнобедренного треугольника из чего следует, что они равны, а значит это равносильно и для ΔBAO и ΔCOD.
2)На основе пересечения данных по условию углов и свойств равнобедренного треугольника следует, что ∠BOA=∠CОD
3)Т.к. ∠BAO=∠CDO и ∠BOA=∠CОD делаем вывод, что и ∠ABO=∠DCO
А значит и AB=CD
sinФ = sin(180° - (α + β)) = sin(α + β)
Пусть напротив угла β лежит сторона b.
По теореме синусов:
b / sinβ = a / sinФ
b = a · sinβ / sinФ = a · sinβ / sin(α + β)
S = 1/2 · a · b · sinα
S = 1/2 · a · a · sinβ / sin(α + β) · sinα
S = a² · sinα · sinβ / (2sin(α + β))