1. Угол, смежный с углом 2, будет равен 180° - 26° = 154°. Этот угол будет равен углу один, следовательно угол 1 = 154°
2. Угол, смежный с углом 1, будет равен 180° - 53° = 127°
Угол 2 = углу, смежному с углом, следовательно a || b.
3. Угол BNM = 180° - 116° = 64°
Т. к. треугольник ABC - равнобедренный, то углы BAC = BCA = 64°
Угол BNM = BCA, следовательно MN || AC.
4. Угол, который односторонний с углом BAE, равен 180° - 120° = 60°
Т. к. BC - биссектриса, то углы ABC = DBC = (180° - 60°) ÷ 2 = 60°
Угол BAC = 180° - 120° = 60°, следовательно угол BCA = 180° - 60° - 60° = 60°
В последнем я жёстко туплю что-то, если найду ошибку, то отпишусь.
высота проведенная из вершины прямого угла на гипотенузу есть среднее пропорциональное между проекциями катетов на гипотенузу
ищешь эту высоту=корень квадратный из 2 на 18= корень из36=6
теперь у тебя есть два прямоугольных треугольника, на которые эта высота разделила исходный треугольник
в этих треугольниках у тебя известны по два катета
по теореме Пифагора ищешь в каждом из полученных треугольников гипотенузы
А эти гипотенузы в исходном треугольнике (тот, который разделился высотой из прямого угла) и есть катеты
ответ:ответ: а√2/2
Объяснение:
Прямые А₁С и DD₁ скрещивающиеся, так как DD₁ лежит в плоскости (АА₁D₁), прямая А₁С пересекает эту плоскость в точке А₁, не лежащей на прямой DD₁.
Расстояние между скрещивающимися прямыми - это расстояние между одной прямой и плоскостью, содержащей другую прямую.
Прямая А₁С лежит в плоскости диагонального сечения АА₁С₁С.
DD₁ ║ AA₁ как противоположные стороны квадрата, АА₁ лежит в плоскости (АА₁С₁), значит DD₁ ║ (AA₁C₁) по признаку параллельности прямой и плоскости.
Расстояние между прямой и плоскостью, которой эта прямая параллельна, - это расстояние от любой точки прямой до плоскости, т.е. длина перпендикуляра, проведенного из любой точки прямой к плоскости.
АА₁ ⊥ (АВС), ⇒ АА₁ ⊥ BD,
АС ⊥ BD как диагонали квадрата, тогда
BD ⊥ (AA₁C₁), т.е. DО - искомое расстояние.
BD = a√2 как диагональ квадрата,
ВО = 1/2 BD = a√2/2.
Объяснение: