Диагональ (BD) параллелограмма делит его на два равных треугольника: \треугольник ABD = \треугольник CBD, так как сторона BD — общая , а \угол 1 = \угол 3 и \угол 4 = \угол 2 как накрест лежащие внутренние при параллельных прямых (AB || CD и AD || BC по определению параллелограмма) . В равных треугольниках AD = BC (так как \угол 1 = \угол 3), AB = CD (\угол 4 = \угол 2), \угол A = \угол C (лежат против BD). \угол ABC = \угол ADC (\угол 1 + \угол 2 = \угол 3 + \угол 4). Углы параллелограмма (например, \угол A и \угол ADC ), прилежащие к одной и той же стороне, являются внутренними односторонними при параллельных прямых (AB || DC, секущая AD) и в сумме составляют 180 градусов.
–––––––––––––––––––––––––––––––––––––––––––––––
Вариант решения.
Опустим высоту из тупого угла.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда
х²=10*1=10
х=√10 см