Точка касания с гипотенузой ВС является точка Е (СЕ=2, ВЕ=3), с катетом АС точка К, с катетом АВ точка М. Угол А прямой.
СЕ=СК=2, длины отрезков выходящих из одной вершины до точек касания к окружности равны, по этому же правилу
ВЕ=ВМ=3
Центр окружности О, r-радиус окружности. ОК=ОМ=r и ОК перепендик АС, ОМ перпендик АВ. АМОК-квадрат и АМ=АК=r
Тогда АС=r+2, АВ=r+3, ВС=2+3=5 по теореме Пифагора
ВС^2=АС^2+АВ^2
5^2=(r+2)^2+(r+3)^2
r^2+4r+4+ r^2+6r+9=25
2r^2+10r+13=25
2r^2+10r-12=0 сократим все на 2
r^2+5r-6=0
найдем дискрим. Д=25+24=49
корень из Д=7
r1=(-5+7)/2
r1=1
r2=(-5-7)/2=-6(радиус не может быть отрицательным)
Радиус вписан.окружности равен r=1см
1) периметр= 20 см потому что диагонали ромба пересекаются под прямым углом образовывая прямоугольный треугольник , за теоремой Пифагора находим сторону ромба 5 см
площадь считаем за формулой 1/2 диагональ на диагональ
S=1/2×d1×d2=1/2×6×8=24cм²
2) треугольник ACD прямоугольный с углом 30° за свойством угла против угла 30° CD=6 см значит АВ=6 см
у правильной трапеции углы при основе равны , значит угол А равен углу Д равен 60° . Поскольку угол САД равен 30 то угол САВ тоже равен 30
за свойством 2 параллельных прямых и сечной угол АСВ тоже равен 30 тоесть треугольник АСВ равнобедренный и ВС равен 6 см
высота трапеции √27 потому что , если опустить перпендикуляр с точки С на АД то за теоремой Пифагора можно найти высоту
площадь = (6+12)/2×√27= 9√27 см²
3) и 4) прости, не знаю
5+7 =11 та 8+7 квітня вправа