Т.к. один из острых углов прямоугольного треугольника равен 45°, то и второй острый угол этого треугольника тоже равен 45°, а сам треугольник является равнобедренным ( гипотенуза является основанием равнобедренного треугольника, а катеты являются бедрами этого равнобедренного треугольника и соответственно равны друг другу )
Пусть а и b - катеты треугольника, а с - его гипотенуза. Так как в нашем случае катеты равны, то по теореме Пифагора с² = 2а²
Площадь же данного треугольника можно найти по формуле S = a*b/2
Так как в данном треугольнике катеты равны друг другу, то формула площади треугольника примет вид S = a²/2 = c²/4
Подставим численное значение длины гипотенузы в полученную формулу и найдём площадь треугольника:
S = c²/4 = 20²/4 = 400/4 = 100
Площадь данного прямоугольного треугольника равна 100.
l^2 = bc - dm
dm = bc - l^2
d/m = b/c (биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон)
m = √[(bc - l^2) * b/c]
d = √[(bc - l^2) * c/b]
f = m + d = √[(bc - l^2) * b/c] + √[(bc - l^2) * c/b] = √[(4 - 1,44) * 0,25] + √[(4 - 1,44) * 4] = 0,8 + 3,2 = 4