1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
В начале построим рисунок, который приложу вложением. Для наглядности соединим т. О поочерёдно с точками A, B, C, D. Получаем пирамиду с вершиной в т. O, в основании которой лежит квадрат ABCD. Первый вопрос: 1). Докажем, что плоскость ABCD параллельна плоскости A1B1C1D1. Для этого построим пары диагоналей AC, BD, а также A1C1, B1D1. 2). Теперь рассмотрим треугольник OBD. Прямая B1D1 параллельна прямой BD, как средняя линия треугольника OBD, т.к. B1D1 соединяет середины его сторон B1 и D1 (эти точки середины по условию). 3). Теперь рассмотрим треугольник OAC. Прямая A1C1 параллельна прямой AC, как средняя линия треугольника OAC, т.к. A1C1 соединяет середины его сторон A1 и C1 (эти точки середины по условию). 4). Тогда получаем, что две пересекающиеся прямые AC и BD плоскости ABCD параллельны двум пересекающимся прямым A1C1 и B1D1 плоскости A1B1C1D1, а из этого, по теореме о параллельности двух плоскостей, следует, что плоскости ABCD и A1B1C1D1 параллельны, что и требовалось доказать. Второй вопрос: 1). Рассмотрим треугольник OBA. B1A1 - средняя линия треугольника OBA, т.к. соединяет середины сторон OB и OA (B1 и D1 середины по условию). Тогда B1A1=1/2 AB=10/2=5. 2). Аналогично B1C1 - средняя линия треугольника BC, C1D1 - средняя линия треугольника CD, A1D1 - средняя линия треугольника AD. 3). Тогда, B1C1=5, C1D1=5, A1D1=5. 4). Периметр A1B1C1D1=B1C1+C1D1+A1D1+B1A1=5+5+5+5=20
ответ: площадь равна пи (или просто п)
Объяснение:
1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
4) площадь окружности п*(r^2)=п*1=п