∠DKC = 36°.
Объяснение:
Вот один из вариантов решения:
∠KAD = ∠ABC = 96° как соответственные углы при параллельных AD и ВС и секущей КВ. ∠BAD = 180° - 96° = 74° , ∠BCD = 180° - 48° = 132° (так как углы, прилежащие к боковым сторонам трапеции, в сумме равны 180°).
В треугольнике КВС ∠ВСК = 180° - 96° - 24° = 60° (по сумме внутренних углов треугольника).
Проведем прямую СL, параллельную ВК. АВСL - параллелограмм.
∠BCL = ∠BAL = 74° (противоположные углы параллелограмма). =>
∠LСD = ∠BCD - ∠BCL = 132° - 74° = 48°. =>
Треугольник СLD равнобедренный. => DL = CL = AB.
Тогда AD = AL + LD = AK + AB.
Но и КВ = АК +AВ. => AD = KB. =>
Треугольники КВС и DAK равны по двум сторонам и углу между ними (AD =KB, BC = АК, ∠KAD = ∠KBC).
В равных треугольниках соответствующие углы равны => ∠AKD = ∠BCK = 60°.
Тогда ∠DKC = ∠AKD - ∠AKC = 60° - 24° = 36°.
Рассмотрим прямоугольные треугольники ABC и DEF с прямыми углами C и F, у которых AC = DF, M и N — середины AC и DF соответственно, BM = EN.
Поскольку AC = DF, CM = AC / 2, FN = DF / 2, то CM = FN. Рассмотрим треугольники BCM и EFN. Они прямоугольные, CM = FN по доказанному, BM = EN по условию. Тогда треугольники BCM и EFN равны по катету и гипотенузе, а значит, BC = EF.
Рассмотрим треугольники ABC и DEF. Они прямоугольные, AC = DF по условию, BC = EF по доказанному. Значит, они равны по двум катетам, что и требовалось доказать.