S(пп) = 122 см²
Объяснение:
Дано:
a = 4 cm
c = 3 cm
Площадь боковой поверхности: S(бп) = 66 cm²
Найти:
Площадь полной поверхности: S(пп) = ?
Для начала найдём вторую сторону основания b:
Для этого воспользуемся формулой:
S(бп) = P(осн)*с, где P(осн) - периметр основания = 2(a+b), ⇒
S(бп) = 2(a+b)*c
подставим имеющиеся значения:
66 = 2(4+b)*3
66 = 6(4+b)
66 = 24 + 6b
6b = 66-24
6b = 42
b = 42/6
b = 7 см
Площадь полной поверхности прямоугольного параллелепипеда S(пп) определяется по формуле:
S(пп) = 2(ab+bc+ac)
подставим имеющиеся значения:
S(пп) = 2(4*7 + 7*3 + 4*3)
S(пп) = 2(28+21+12)
S(пп) = 2*61
S(пп) = 122 см²
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²