Вершины равнобедренного треугольника авс лежат на окружности, причем основание ас этого треуг. стягивает дугу 70° найдите градусные меры дуг ав и вс .
Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Рассмотрим треугольник АВС, <C=90º. СD - биссектриса <C, AE - биссектриса <А.
По свойству биссектрис:
<C/2=<АCD, <ВCD=90/2=45º.
<А/2=<ЕАC, <ВАЕ.
<АCD=<АCО.
<ЕАC=<ОАC.
Рассмотрим треугольник АСО, <СОА=115º, <АCО=45º, найдем угол <ОАC.
По свойству углов треугольника:
<СОА+<АCО+<ОАC=180º
<ОАC=180-<СОА+<АCО=180º-115º-45º=20º.
Вернемся к треугольнику АВС, определим <А:
<ОАC=<ЕАC=<А/2
Откуда:
<А=2*<ОАC=2*20=40º.
По свойству углов треугольника:
<А+<В+<С=180º.
<В=180-<А-<С=180º-40º-90º=50º.
ответ: меньший угол треугольника АВС - <А=40º.
Объяснение: