Прежде чем рассматривать 6 угольник. Давайте рассмотрим 4 угольник. Чуть позже объясню почему. (рисунок 1) Соединим середины сторон 4 угольника ABCD. Проведем диагональ AC Очевидно что MN-средняя линия треугольника ABC,откуда MN||AC, также PQ-cредняя линия треугольника ACD ,то PQ||AC. То выходит что MN||PQ. Анологично при проведении другой диагонали докажем что MQ||NP. То MNPQ-параллелограмм. Рассмотрим наконец 6 угольник проведем в нем диагональ D (2 рисунок) Она бьет его на 2 четырехугольника. На ней отметим точку S,являющуюся серединой диагонали. То из выше сказанного A1A2A3S-параллелограмм. Понятно , что для точек A1 A2 A3 cуществует одна и только одна точка H, для которой A1A2A3H-параллелограмм. А значит точка H совпадает с точкой S. H=S Тк второй такой точки не существует. Рассуждая анологично для второго 4 угольника. Покажем что M=S. А значит формально говоря: H=M ЧТД.
В основании пирамиды лежит квадрат. Обозначим АВСД. Диагонали пересекаются в точке О. Вершину пирамиды обозначим S Рассмотрим треугольник АSО. Он прямоугольный, по теореме Пифагора определим катет ОА² = 100-64=36, ОА=6. Определим сторону основания пирамиды. АВ²=36+36= 72, АВ=√72=6√2. Площадь основания равна S= АВ²=72, Объем пирамиды вычислим по формуле: V=(S · h) / 3 = 72·8/3=24·8=192 (куб. ед.) Все боковые грани пирамиды равнобедренные треугольники равные между собой. Рассмотрим одну из боковых граней: АSВ. Построим высоты SК АК= 3√2. Определим длину SК по теореме Пифагора. SК²=10²-(3√2)²=100-18=82, SК=√82. Определим площадь грани АSВ. S =0,5·АВ · SК = 0,5·6√2·√82=3√164. Площадь боковой поверхности пирамиды равна 4·3√164=12√164. Полная площадь поверхности пирамиды равна 12√164+72≈12·13+72=228(кв. ед.) ответ: 192 куб. ед., 228 кв. ед.
Смотри . . . . ...
Объяснение:
На фото. . . .