Объяснение:в треугольнике с 30,60,90 есть такое свойтво наименьший катет А(противолежит углу 30 ) а другой катет (протеволежит углу 60 ) A а гипотенуза равна 2A , тогда r=OL=KL/ OL=7,1дм длинна равна 2πr= 2*p*7,1 =14,2π дм
Если предположить, что равносторонний конус - это конус, у которого длина образующей равна диаметру основания, то ответ: Проведём осевое сечение конуса с вписанным в него шаром. Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1. Sk = So+Sбп So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2 Sk = π4 + π/2 = 3π/4 Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н = = (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3 Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3 Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.
Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
ответ:14,2π дм
Объяснение:в треугольнике с 30,60,90 есть такое свойтво наименьший катет А(противолежит углу 30 ) а другой катет (протеволежит углу 60 ) A
а гипотенуза равна 2A , тогда r=OL=KL/
OL=7,1дм длинна равна 2πr= 2*p*7,1 =14,2π дм