Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25
1,6м 1,6м 3,2м АС= СВ
АО = ОС
Найти: АВ, АС, АО, ОВ
Решение:
АС = СВ = 3,2(см) (по условию)
АВ = АС + СВ = 3,2 + 3,2 = 6,4 (см),т.к. АС +СВ по усл.задачи.
АС = АО + ОС; АО=ОС (по условию), значит АО = ОС = АС : 2 = 3,2 : 2 = 1,6(см)
ОВ = ОС + СВ = 1,6 + 3,2 = 4,8 (см)