М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Oclahoma
Oclahoma
17.01.2021 10:57 •  Геометрия

Точка O центр кола OM радіус OM=5 см якщоOA=3 см то точка А лежить​

👇
Открыть все ответы
Ответ:
yliya302
yliya302
17.01.2021

ответ: Sосн=225π(см²);

Sбок.пов=375π(см²); Sпол=600π(см²);

V=1500π(см³); Sсеч=300см²

Объяснение: образующая конуса с радиусом образуют прямоугольный треугольник, в котором радиус и высота - катеты, а образующая- гипотенуза. Найдём высоту конуса h по теореме Пифагора:

h²=обр²-r²=25²-15²=625-225=400;

h=√400=20см

Так как осевым сечением конуса является треугольник, то его площадь вычисляется по формуле:

S=½×а×h, где а- сторона треугольника, а h- высота проведённая к стороне. Стороной бокового сечения является диаметр конуса=15×2=30см

Sсеч=½×30×20=15×20=300см²

Найдём площадь основания по формуле:

S=πr², где r- радиус основания:

Sосн=π×15²=225π(см²)

Площадь боковой поверхности конуса вычисляется по формуле: S=πrl, где r=радиус, а l- образующая:

Sбок.пов=π×15×25=375π(см²)

Чтобы найти полную площадь поверхности конуса нужно суммировать обе площади: основания и боковой поверхности:

Sпол=Sбок.пов+Sосн=

=375π+225π=600π(см²)

Теперь найдём объем конуса по формуле: V=⅓×Sосн×h=225π×20=4500π×⅓=

=1500π(см³)


Вычислите площадь осевого сечения, площадь полной поверхности и объём конуса, если его радиус равен
4,6(87 оценок)
Ответ:
evgen22regiooon
evgen22regiooon
17.01.2021

ответ:ответ: не может.

Определение : Трапеция — четырехугольник, у которого две стороны параллельны. (Как правило, в определении указывается, что две другие не параллельны) Параллельные стороны называются основаниями трапеции, две другие — боковыми сторонами.

Сумма односторонних внутренних углов, образующихся при пересечении двух параллельных прямых третьей (секущей ) прямой, равна 180°. Если один угол острый, второй дополняет его до 180° и поэтому больше прямого. Следовательно, два внутренних угла при боковой стороне трапеции могут быть либо равными по 90°, либо острым и тупым. Если как частный случай трапеции рассматривать прямоугольник, то прямыми могут быть все её углы.

ответ: у трапеции не может быть ни трёх прямых углов, ни трёх острых.

Объяснение:

4,8(100 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ