1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
В данной призме АВСД - квадрат со стороной 6 см, АА1=8 см. Найдём расстояние от стороны основания АВ до не пересекающей её диагонали В1Д.
Расстояние от прямой до не параллельной и не пересекающей её прямой равно расстоянию до параллельной ей плоскости, в которой лежит вторая прямая. АВ║СД, АВ║А1В1, значит прямая АВ параллельна плоскости А1ДСВ1, В1Д∈А1СВ1. А1Д∈А1СВ1, АВ∦А1Д, значит расстояние от точки А до прямой А1Д, равно искомому расстоянию.
В прямоугольном треугольнике АА1Д отношение катетов АД и АА1 равно 6:8=3:4, такое же как в египетском треугольнике, значит гипотенуза А1Д=10 см. АК=h=ab/c=АД·АА1/А1Д=6·8/10=4.8 см - это ответ.
Типа 3 см диаметр. Вымеряем с линейки