Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
Прямая параллельна плоскости, если она параллельна некоторой прямой, лежащей в этой плоскости.
Рассмотрим куб ABCDA1B1C1D1. В нём ребро А1В1 параллельно ребру АВ. Ребро АВ лежит в плоскости АВС, тогда ребро А1В1 параллельно плоскости АВС. Аналогично, ребро В1С1 параллельно ребру ВС, лежащему в плоскости АВС, тогда оно параллельно плоскости АВС.
Теперь обозначим плоскость АВС за α, прямую, содержащую ребро А1В1 за а, прямую, содержащую ребро В1С1 за b. Тогда прямые a и b параллельны α, но из этого не следует, что a параллельна b - в нашем случае эти прямые имеют общую точку B1.