. Запишіть рівняння прямої, на яку відобразиться пряма у = 2 при повороті навколо точки М(1; -1) на кут 90°: а) за годинниковою стрілкою; б) проти годинникової стрілки.
По условию n-нечетное число, то есть n=2•m+1, m=0, 1, 2, …. Тогда
(n–1)= 2•m и (n+1)= 2•m+2=2•(m+1) чётные числа.
Пусть (n–1) делится на 4. Так как (n+1) делится на 2 как чётное число, то их произведение (n–1)•(n+1) делится 8 (=4•2).
Пусть (n–1) не делится на 4, то из представления (n–1)=2•m заключаем, что (n–1) делится на 2 и m нечётное число. Тогда из представления (n+1)=2•(m+1) имеем, что (m+1) чётное число, а следовательно (n+1)=2•(m+1) делится на 4.
Значит произведение (n–1)•(n+1) делится 8.
Как известно, при делении натурального числа на 3 получаем остаток 0, 1 или 2. В произведении (n–1)•n•(n+1) участвуют три последовательные числа, то есть возрастают на единицу. Поэтому, при делении этого произведения получим один из наборов остатка: 0, 1, 2 или 1, 2, 0 или 2, 0, 1. Отсюда следует, что при делении на 3 остаток от деления одного из множителей равен 0, которое означает, что этот множитель делится на 3.
Итак, мы доказали, что n³–n делится на 8 и 3. Так как (наибольший общий делитель) НОД(8; 3)=1, то n³–n делится на 24 (=8•3).
Рисунок вам нарисовала. Там все ясно-понятно. Треугольник FAB равносторонний. Все стороны равны, все углы по 60, такой вывод делаем из условия. Сторону этого треугольника обозначаем х. Δ FMA: М = 90 FM - бисектриса, медиана, высота FM = хsina = x√3/2 Чтобы найти угол между мимобегущими, нужно найти угол между паралельными им прямыми, которые пересекаются. Перенесем AC в ML, это будет средняя линия треугольника ABC Чтобы узнать AC найдем диагональ квадрата d² = 2a² Сторона у нас х d² = 2x² d = x√2 ML = x√2/2 ΔFMO₁ (O₁ = 90) MO₁ = x√2/4 MO₁/FM = cos a = x√2/4/x√3/2 = √2/2√3 = √6/6 Не знаю, почему значение не табличное, может я ошиблась, но вроде все правильно было :)
Объяснение:
Разложим: n³–n=n•(n²–1)=n•(n–1)•(n+1)=(n–1)•n•(n+1)
По условию n-нечетное число, то есть n=2•m+1, m=0, 1, 2, …. Тогда
(n–1)= 2•m и (n+1)= 2•m+2=2•(m+1) чётные числа.
Пусть (n–1) делится на 4. Так как (n+1) делится на 2 как чётное число, то их произведение (n–1)•(n+1) делится 8 (=4•2).
Пусть (n–1) не делится на 4, то из представления (n–1)=2•m заключаем, что (n–1) делится на 2 и m нечётное число. Тогда из представления (n+1)=2•(m+1) имеем, что (m+1) чётное число, а следовательно (n+1)=2•(m+1) делится на 4.
Значит произведение (n–1)•(n+1) делится 8.
Как известно, при делении натурального числа на 3 получаем остаток 0, 1 или 2. В произведении (n–1)•n•(n+1) участвуют три последовательные числа, то есть возрастают на единицу. Поэтому, при делении этого произведения получим один из наборов остатка: 0, 1, 2 или 1, 2, 0 или 2, 0, 1. Отсюда следует, что при делении на 3 остаток от деления одного из множителей равен 0, которое означает, что этот множитель делится на 3.
Итак, мы доказали, что n³–n делится на 8 и 3. Так как (наибольший общий делитель) НОД(8; 3)=1, то n³–n делится на 24 (=8•3).