1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2
Запишите уравнение прямой, симметрично прямой y = x - 2 относительно точки A(-3;1)
Объяснение:
Прямая y = x - 2, к=1 ; К(0; -2) принадлежит этой прямой( легко проверяется) .
Пусть уравнение симметричной прямой у₁=к₁х+в₁ .
Т.к прямые симметричные относительно точки, то они параллельны ⇒ их угловые коэффициенты равны , значит к₁=1. Пусть К₁∈у₁ .
Найдем координаты точки К₁(х;у) симметричной точке К( 0;-2) относительно A(-3;1) , по формулам середины отрезка ( тк.АК=АК₁)
х(А)=
, x(K₁)=-3*2-0=-6,
y(A)=
, y((K₁)= 1*2-(-2)= 4 ⇒ K₁(-6; 4 ).
В уравнение у₁=к₁х+в₁ подставим к=1 и K₁(-6; 4 ) , получим 4=1*(-6)+в₁,
в₁=10 . Окончательно получаем у₁=1х+10 или у₁=х+10.