Найдите тангенс угла АОВ. сторона одной клетки равна 1. Запишите ответ в виде целого числа, обыкновенной или смешанной дроби.
ответ: 7
Объяснение.
Клетки на рисунке - квадратные. Следовательно, прямые, проведенные через их противоположные вершины, - их диагонали - пересекутся под прямым углом.
Проведем из В прямую по диагоналям соседних клеток к стороне ОА данного угла. Т.к. прямая ОА проходит также по диагонали клеток с общей вершиной, ВН перпендикулярен ОА. Треугольник ВОН - прямоугольный.
Примем диагональ клетки равной а. Тогда катет ОН=0,5а ( половина диагонали клетки), и ВН=3,5а.
Тангенс - отношение катета, противолежащего углу, к катету прилежащему.
tg AOB=tg НОВ=BH/OH=3.5/0.5=7
ответ: S біч = ( 24 + 12√2 ) см² .
Объяснение:
В паралелепіпеді ABCD - паралелограм ; ∠А = 45° ; АВ =2√2 см ;
AD = 4 cм ; AC₁ = 7 см ; S біч - ? S біч= P * H ;
P = 2( 2√2 + 4 ) см . У паралелограмі ABCD ∠В = 180° - ∠А = 180°- 45°=
= 135° . Із ΔАВС за Т . косинусів : АС = √[(2√2)²+ 4² -2√2* 4cos135°] =
= √ ( 8 + 16 + 16√2cos45°) = √ ( 24 + 16√2 * √2/2 ) = √ 40 = 2√10 ( см ) .
Із прямок . ΔАСС₁ за Т . Піфагора СС₁ = Н = √ (7² - ( 2√10 )² ) =
= √ (49 - 40 ) = √9 = 3 ( см ) .
S біч = ( 4√2 + 8 ) * 3 = ( 24 + 12√2 ) ( см² ) .
Вариант 1.
1.
Для начала найдём один из отрезков, полученным, делением гипотенузы высотою: отрезок BD.
Так как это высота, то отрезок образует 2 прямых угла: <BDA; <ADC.
Тоесть образуется 2 прямоугольных треугольника: ΔBDA; ΔADC.
По теореме Пифагора — BC равен:
Чтобы найти всю гипотенузу BC — вычислим оставшийся отрезок DC.
Для этого нам нужна одна из формул вычисления высоты прямоугольного треугольника:
DC = 9; BD = 16 => BC = 9+16 = 25см.
По теореме Пифагора, AC равен:
Косинус угла равен отношению прилежащего катета к гипотенузе, то есть:
Вывод: AC = 21.9см; cos(<C) = 0.876.
2.
Для начала найдём оставшийся стороны паралеллограмма: BD & AD, которые друг другу равны.
Так как BD — перпендикулярен стороне AD — то он образует прямой угол с этой сторон, тоесть: ΔADB — прямоугольный.
Формула вычисления стороны BD, зная угол A, и гипотенузу AB:
Осталось найти сторону AD (по теореме Пифагора), на которой проведена высота BD, чтобы потом найти площадь:
Теперь, формула вычисления площад параллелограмма такова:
Вывод: S = 71.1см².