В шаре, радиус которого равен 3см, просверлено цилиндрическое отверстие вдоль его диаметра. Вычислить объём оставшейся части шара, если радиус отверстия равен 1,8см. Значение числа π в вычислениях округлить до
1) Рассмотрим треугольник, образованный боковым ребром, высотой пирамиды и проекцией этого ребра на основание. Так как по условию боковое ребро наклонено под углом 30 градусов, то катет, лежащий против него, равен половине гипотенузы, т. е. 3. А другой катет будет равняется 3V3 (по т. Пифагора). Найденный катет составляет 2/3 от высоты равностороннего треугольника, лежащего в основании правильной пирамиды. Вся высота равност. треуг. равна 9*V3/2. Внутри равностороннего треугольника есть маленький треугольник (образован высотой большого, стороной большого и половиной другой стороны большого). Угол между сторонами равност.о треуг. 60 градусов. Синус угла в 60 градусов равен отношению высоты к стороне равност. треуг. Пусть сторона равност. треуг. - х, тогда 9V3/2x = V3/2. х = 9. По формуле объем равен 1/3S(осн)*высоту. S(осн) = x^2 * V3/4 = 81*V3/4. Объем равен 1/3*81*V3/4*3 = 81*V3/4.
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Пусть сторона равност. треуг. - х, тогда 9V3/2x = V3/2. х = 9.
По формуле объем равен 1/3S(осн)*высоту. S(осн) = x^2 * V3/4 = 81*V3/4. Объем равен 1/3*81*V3/4*3 = 81*V3/4.