1. Найдите длину отрезка ВС и координаты его середины, В (-2; 5) и С (4; 1).
ВС = √((4-(-2))² + (1-5)²) = √(36 + 16) = √52 = 2√13.
Середина: ((-2+4)/2= 1: (5+1)/2= 3) = (1; 3).
2. Составьте уравнение окружности, центр которой находится в точке A(-1; 2) и которая проходит через точку M (1: 7).
Находим радиус R = √(((1+1)² + (7-2)²) = √29,
3. Найдите координаты вершины В параллелограмма ABCD, если А (3, -2), C(9; 8), D (-4; -5).
AB = DC, Δx(DC) = 13, Δy(DC) = 13,
xB = xA + Δx(DC) = 3 + 13 = 16,
yB = yA + Δy(DC) = -2 + 13 = 11. Точка В ((16; 11).
4. Составьте уравнение прямой, проходящей через точки А (1; 1) и B(-2: 13).
Вектор АВ = (-2-1=-3; 13-1 = 12) = (-3; 12).
Уравнение в каноническом виде с использованием точки А: (х - 1)/(-3) = (у - 1)/12.
5. Найдите координаты точки, принадлежащей оси абсцисс и равноудалённой от точек A (-1; 4) и В (5; 2).
Точка С на оси Ох имеет координаты С(х; 0)
Равенство квадратов длин СА и СВ:
(х + 1)² + 16 = (х - 5)² + 4.
х² + 2х + 1 + 16 = х² - 10х + 25 + 4.
12х = 12, х = 1.
Точка С(1; 0).
6. Составьте уравнение прямой, которая параллельна прямой у = -2x 7 и про проходит через центр окружности
x?+y?-8x+4y+12=0
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1