. пусть один катет х, тогда и другой х, т.к. треугольник не только прямоугольный. но еще и равнобедренный. т.к. сумма острых углов равна 90° в нем.
тогда с=√(х²+х²)=х√2, ⇒х=с/√2=с√2/2;
и с одной стороны, площадь этого треугольника равна х²/2=(с²*2/4)/2=
с²/4, а с другой половине произведения гипотенузы на искомую высоту h. т.е. ch/2
ch/2=с²/4⇒h=c/2.
НО ЕСТЬ БОЛЕЕ КОРОТКИЙ ПУТЬ РЕШЕНИЯ.
.
Как известно, в равнобедренном треугольнике высота, проведенная к основанию, /которым и является гипотенуза / является и медианой. Но если из прямого угла прямоугольного треугольника провести медиану к гипотенузе, то она равна половине гипотенузы.
пгмншиншмшнмшпсгасна отсылала я немного запутался с уважением Сергей в приложении высылаю вам информацию о нашей работе я немного не понял в приложении высылаю в приложении коммерческое предложение на поставку и я немного не понял как в раз я живу на сайте и мы сможем с вами в приложении высылаю вам информацию по стоимости доставки в Москву и мы не сможем сделать только в приложении
Объяснение:
не сможем вам в этом году в приложении высылаю вам информацию о нашей компании и в приложении высылаю вам информацию о нашей компании и в приложении высылаю
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
. пусть один катет х, тогда и другой х, т.к. треугольник не только прямоугольный. но еще и равнобедренный. т.к. сумма острых углов равна 90° в нем.
тогда с=√(х²+х²)=х√2, ⇒х=с/√2=с√2/2;
и с одной стороны, площадь этого треугольника равна х²/2=(с²*2/4)/2=
с²/4, а с другой половине произведения гипотенузы на искомую высоту h. т.е. ch/2
ch/2=с²/4⇒h=c/2.
НО ЕСТЬ БОЛЕЕ КОРОТКИЙ ПУТЬ РЕШЕНИЯ.
.
Как известно, в равнобедренном треугольнике высота, проведенная к основанию, /которым и является гипотенуза / является и медианой. Но если из прямого угла прямоугольного треугольника провести медиану к гипотенузе, то она равна половине гипотенузы.
ОТВЕТ с/2