М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
RANDOM328
RANDOM328
18.08.2020 06:12 •  Геометрия

Решить четвёртое. Геометрия 10 класс


Решить четвёртое. Геометрия 10 класс

👇
Открыть все ответы
Ответ:
Вписать в четырехугольник (трапецию) можно при условии: сумма противоположных сторон равны. Поскольку трапеция прямоугольная, значит боковая сторона, образующая с основаниями прямой угол = 2R=12. Обозначим другую боковую сторону через y. Если проведем высоту к большему основанию, получим прямоугольник со сторонами 6 и 10. Теперь нужно составить уравнение, чтобы найти разницу между основаниями, обозначим это значение через х. Тогда получим уравнение:  12+у=10+(10+х)  Отсюда выразим х=у-8. В прямоугольном треугольник  у-гипотенуза, х - катет, другой катет=12. По теореме Пифагора, находим у^2-(x-8)^2=12^2. Раскроем скобки, приведем подобные, получим 16у=208, у=13. Отсюда х=5. Значит большая сторона = 15. По формуле площади трапеции: S=(10+15)/2*12  S=25*6=150
4,8(21 оценок)
Ответ:
ayratka2
ayratka2
18.08.2020
Допустим, прямая не пересекает плоскость бета, а параллельна ей. Тогда все точки этой прямой должны находиться на равном удалении от плоскости бета (иначе один из концов пряой приблизится к плоскости бета и пересечет ее) . Одна точка, точка пересечения прямой с плоскостью альфа, находится на том же расстоянии от плоскости бета, что и плоскость альфа. Следовательно все остальные точки прямой находятся на таком же расстоянии, т. е. лежат в плоскости альфа, значит вся прямая долна лежать в плоскости альфа. Но по условию прямая не лежит в плоскости альфа, а пересекает ее. Таким образом она не может быть параллельна плоскости бета и пересечется с ней.

2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a 
4,7(68 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ