Вписать в четырехугольник (трапецию) можно при условии: сумма противоположных сторон равны. Поскольку трапеция прямоугольная, значит боковая сторона, образующая с основаниями прямой угол = 2R=12. Обозначим другую боковую сторону через y. Если проведем высоту к большему основанию, получим прямоугольник со сторонами 6 и 10. Теперь нужно составить уравнение, чтобы найти разницу между основаниями, обозначим это значение через х. Тогда получим уравнение: 12+у=10+(10+х) Отсюда выразим х=у-8. В прямоугольном треугольник у-гипотенуза, х - катет, другой катет=12. По теореме Пифагора, находим у^2-(x-8)^2=12^2. Раскроем скобки, приведем подобные, получим 16у=208, у=13. Отсюда х=5. Значит большая сторона = 15. По формуле площади трапеции: S=(10+15)/2*12 S=25*6=150
Допустим, прямая не пересекает плоскость бета, а параллельна ей. Тогда все точки этой прямой должны находиться на равном удалении от плоскости бета (иначе один из концов пряой приблизится к плоскости бета и пересечет ее) . Одна точка, точка пересечения прямой с плоскостью альфа, находится на том же расстоянии от плоскости бета, что и плоскость альфа. Следовательно все остальные точки прямой находятся на таком же расстоянии, т. е. лежат в плоскости альфа, значит вся прямая долна лежать в плоскости альфа. Но по условию прямая не лежит в плоскости альфа, а пересекает ее. Таким образом она не может быть параллельна плоскости бета и пересечется с ней.
2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a