Апофема грани, высота пирамиды и расстояние от основания высоты до основания апофемы образуют прямоугольный треугольник. из него найдем половину стороны основания.
1/2 стороны основания= √(4а² - (а√2)²)=4а²-2а²=√2а² и равна а√2
а сторона основания равна 2а√2
Поскольку высота и половина основания равны в этом прямоугольном треугольнике, он - равнобедренный и угол между апофемой и средней линией квадрата в основании, что равносильно углу между боковой гранью и основанием,
равен 45 градусам.
Расстояние от центра основания пирамиды - перпендикуляр к апофеме. Поскольку угол между апофемой и плоскостью основания 45 градусов, получится равнобедренный прямоугольный треугольник с гипотенузой= половине стороны основания и катетами, равными половине апофемы = а.
Расстояние от центра основания до плоскости боковой грани =а
Площадь поверхности пирамиды равна сумме площади основания и площади боковой поверхности.
S основания =(2а√2)²=8а²
S боковая =4* 2а*а√2 =8а²√2
S полная =8а²√2+8а²=8а²(√2+1)
Медианы треугольника пересекаются в одной точке.
Высоты треугольника пересекаются в одной точке.
В данном треугольнике эти точки совпадают - медианы являются также высотами.
Совпадение медианы и высоты к основанию - признак равнобедренного треугольника.
Таким образом данный треугольник является равнобедренным относительно любой стороны, то есть равносторонним.
O - точка пересечения медиан, AA1 - медиана, A1 - середина BC.
O - точка пересечения высот (ортоцентр), AA1 проходит через точку O => AA1 - высота, AA1⊥BC
∠AA1B=∠AA1C=90 (AA1 - высота)
BA1=CA1 (AA1 - медиана)
△BAA1=△CAA1 (по двум катетам, AA1 - общий) => AB=AC
(Доказали: Если медиана треугольника совпадает с его высотой, то треугольник равнобедренный.)
Аналогично: BB1 - медиана и высота к стороне AC => AB=BC
AB=AC=BC, △ABC - равносторонний