Объяснение:
Центр окружности, вписанной в равнобедренную трапецию, лежит на середине отрезка КЕ (точки К и Е - середины оснований).
Так как точка пересечения диагоналей лежит на том же отрезке, но ближе к меньшему основанию, высота пирамиды лежит на образующей конуса, проходящей через точку К.
Высота трапеции равна диаметру вписанной окружности, а суммы противолежащих сторон равны.
Итак, ВР = КЕ = 2R,
AB + CD = AD + BC
AD = b, BC = a.
Чтобы найти высоту пирамиды, надо знать длину КН, а для этого найти расстояние между центром окружности и основанием высоты пирамиды ОН = х.
ΔАВР: ∠АРВ = 90°,
AP = BP · ctg α = 2R · ctg α
Тогда
Так как по свойству равнобедренной трапеции
АР = (AD - BC) / 2, то
b - a = 2AP = 4R · ctg α
ΔAHD ~ ΔCHB по двум углам, тогда их высоты относятся как сходственные стороны:
a(R + x) = b(R - x)
aR + ax = bR - bx
x(a + b) = R(b - a)
KH = R - x = R(1 - cos α)
Справа на рисунке осевое сечение конуса, проходящее через хорду КЕ.
∠KSH = ∠KMO = β как соответственные при SH║MO и секущей КМ.
SH = KH · ctg β = R(1 - cos α) · ctgβ
Итак, объем пирамиды:
Осталось из прямоугольного треугольника МОЕ выразить R:
1. дан тр. ABC, BD медиана, тк треугольник равнобедренный, то BD делит его основание пополам. из этого AD=DC
2. тк треугольник равнобедренный, то медиана BD перпендикулярна к AC ( уг. ADB= уг BDC )
3. значит тр. ADC и BDC прямоугольные и равные ( BD общая, углы равны, AB=BC )
по теореме пифагора найдем AD тр ABD
AD^2= AB^2-BD^2
AD= корень кв. 13^2-12^2
AD=корень кв. 169-144
AD= корень кв. 25
AD=5
4. Значит AD=DC= 5 см AC=10см
5. Pтр= 13+13+ 10 =36 см
6. Sтр= 1/2 AC*BD
Sтр= 1/2* 10*12= 60 см
ответ: Sтр=60 см, Pтр = 36 см