Послідовно виконують поворот правильного шестикутника навколо його центра на 5,15,25, ... градусів проти годинникової стрілки.Після якої найменшої кількості поворотів правильний шестикутник відобразиться сам на себе?
Диагонали взаимно перпендикулярны, кроме того, углы, образованные ими, равны, а также точкой пересечения диагонали делятся пополам. Пусть О - точка пресечения диагоналей, тогда AO = AC = 16√3, BO = OD = 16. По теореме Пифагора находим гипотенуза AB, которая будет равна √(AO²+OB²) = √(16²+(16√3)²) = √(256+768) = √1024 = 32 => гипотенуза в два раза больше противолежащего катета => угол ABO = 30° => угол ABC =60°, т.к. угол CBO = ABO = 30°. Тогда угол ADC = 60°, т.к. противоположные углы ромба равны. Находим далее угол BAD + BCD, которые равны 360° - угол ABC - ADC = 360°-60°-60° = 240°. Значит, угол BAD = DCB = 1/2*240° = 120°.
По определению синус угла равен отношению противолежащего катета к гипотенузе)) нужно построить прямой угол (две перпендикулярные прямые) --это будет первая вершина треугольника, от вершины прямого угла отложить отрезок, равный 3 см (или 6 мм, или 9 метров...), обозначить вершину А --это будет вторая вершина треугольника, из точки А раствором циркуля, равным 5 см (или 10 мм, или 15 метров соответственно) провести окружность, точка пересечения окружности со второй прямой будет третьей вершиной треугольника и вершиной нужного угла (обозначить В), АВ - гипотенуза... 2) аналогично... катет равен 1 (противолежащий углу), гипотенуза = 2