Объяснение:1. Если один из углов прямоугольного треугольника равен 20°, то чему равен другой острый угол? Решение: 90° - 20°=70°, ответ: 70°
2. Градусная мера угла при вершине равнобедренного треугольника равна 80°. Чему равны градусные меры углов при
основании? Решение: (180°-80°):2=50° ответ : 50° и 50°
3.Один из углов, образованных при пересечении двух прямых, равен 49°. Найдите меры остальных углов. ∠1=∠3=49°∠2=∠4=180°-49°=131° ответ: 49°, 131°, 131°
4. Если боковая сторона равнобедренного треугольника равна 14 см, а основание - 1 см, то чему равен периметр треугольника? Решение: Р= 14+14+1=29 см ответ: 29 см
5.Найдите смежные углы, если один из них на 50° больше другого. Решение: х+(х+50)=180 ⇒ 2х =130 ⇒ х=130:2=65° ⇒∠1=65°, ∠2=180°-65°= 115° ответ: 65° и 115°
6. В равных треугольниках ABC и КМР АВ = 8 см, ВС = 15см. Периметр треугольника АВС равен 31 см. Найдите длину стороны КР. Решение: по условию КР= АС = 31-8-15= 8 см
Обозначим высоту пирамиды Н, высоту боковой грани h, сторону основания а (в основании квадрат).
площадь основания = площадь полной поверхности - пощадь боковой поверхности = 96 см^2 - 80 см^2 =16 см^2
Т.к. в основании квадрат, площадь основания = а^2 =16 см^2
а=4
Площадь поверхности одной боковой грани = а*h/2 =80/4 =20 cм^2
Высота боковой грани h = 20*2/4=10 см
Рассмотрим треугольник, образованный высотой пирмиды, высотой боковой грани и отрезком (обозначим его длину с), соединяющим точки их пересечения с основанием, равным полвине стороны основания. Это прямоугольный треугольник, т.е. h^2 = c^2 + H^2
c=a/2 = 2 см
H = корень квадратный (h^2 - c^2) = корень квадратный (96)=4 корня квадратных из 6