Основные научные достижения арабских ученых относятся ко времени Раннего Средневековья. Значителен был вклад арабов в математическую науку. В VIII в. – и особенно в IX-Х вв. – арабские ученые сделали важные открытия в области геометрии, тригонометрии. Живший в Х в. Абу-л-Вафа вывел теорему синусов сферической тригонометрии, вычислил таблицу синусов с интервалом в 15°, ввел отрезки, соответствующие секансу и косекансу. Поэт, ученый Омар Хайям написал «Алгебру» – выдающееся сочинение, в котором содержалось систематическое исследование уравнений третьей степени. Он также успешно занимался проблемой иррациональных и действительных чисел. Ему принадлежит философский трактат «О всеобщности бытия». В 1079 г. он ввел календарь, более точный, чем современный григорианский. В Багдадском халифате узнали о математических открытиях индийцев в VIII в. Сразу же подхваченная арабами цифровая система стала известна в Западной Европе под названием арабской к XII в. (через арабские владения в Испании).
пусть дана трапеция ABCD с равными боковыми сторонами AD = BC. сумма ее оснований AB + DC = 17 см, высота AH = 3,5 см
угол ADH = 45 градусам по условию, угол AHD = 90 градусов, так как AH - высота = >
угол DAH = 180 - 90 - 45 = 45 градусов => треугольник AHD - равнобедренный, DH = AH = 3,5 см.
проведем еще одну высоту BL.
угол BCL = 45 градусам по условию, угол BLC = 90 градусов, так как BL - высота =>
угол LBC = 180 - 90 - 45 = 45 градусов => треугольник BCL - равнобедренный, LC = BL = 3,5 см
AB || DC, AH || BL = > ABLH - паралеллограмм => AB = HL
пусть AB = HL = x. тогда:
AB + DC = AB + DH + HL + LC = 2x + 7 = 17
2x = 10
x = 5
AB = 5 см.
DC = DH + HL + LC = 3,5 + 5 + 3,5 = 12 см.
ответ: AB = 5 см; DC = 12 см