М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Саша555111
Саша555111
05.10.2021 20:24 •  Геометрия

решить задание по геометрии


решить задание по геометрии

👇
Открыть все ответы
Ответ:
Найдите объём усечённого конуса, описанного около шара, радиус которого равен 6, если известно, что боковая поверхность усечённого конуса равна 400пи

Площадь боковой поверхности усеченного конуса находят по формуле
S=πL(R+r)
Как в трапецию можно вписать окружность только тогда, когда сумма боковых сторон равна сумме оснований, так и в усеченный конус можно вписать шар тогда и только тогда, когда образующая равна сумме радиусов
(второе вытекает из первого).
S=πL(R+r)
R+r=L
S=πL*L=πL²
400π=πL²
L²=400
L=20
Рассмотрим осевое сечение усеченного конуса, в нем - все нужные элементы.
Это трапеция АВСД, высота СН  которой равна  2 радиусам вписанного в конус шара.
h=СН=2*6=12
НД=R-r
НД²=СД²-СН²
НД²=400-144=256
НД=16
Составим систему уравнений:
|R+r=20
|R-r=16
2R=36
R=18
r=20-18=2
Объем усеченного конуса находят по формуле
V= πh(R²+Rr+r²):3
V= π*12*(18²+2*18*+2²):3
V= π*4*(324+36+4)=π*364*4=1456π
-----------
[email protected]

Найдите объём усечённого конуса, описанного около шара, радиус которого равен 6, если известно, что
4,8(1 оценок)
Ответ:
uchenik5713
uchenik5713
05.10.2021
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны. Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны.
Доказываю.
Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку.  Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1.  Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
4,4(60 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ