1.найдите площадь полной поверхности цилиндра
РЕШЕНИЕ
альфа (a)
высота цилиндра Н=R*tg(a)
длина окружности основания L=2pi*R
площадь боковой поверхности Sбок=H*L=R*tg(a)*2pi*R=2pi*R^2*tg(a)
площадь основания Sосн=pi*R^2
площадь полной поверхности S=2Sосн+Sбок=2pi*R^2 +2pi*R^2*tg(a)=2pi*R^2(1+tg(a))
ответ 2pi*R^2(1+tg(a))
2.найдите площадь сечения призмы
РЕШЕНИЕ
площадь боковой поверхности Sбок=240 см
боковое ребро прямой призмы (высота) H= 10 см
периметр основания Р=Sбок/H=240/10=24 см
в основании РОМБ, сторона ромба b=P/4= 6 см
ромб с острым углом 60 градусов.-значит он состоит из двух равностороннних треугольников-, у которых одна сторона-это меньшая диагональ d=b= 6 см
меньшие дигонали и боковые ребра являются сторонами искомого сечения
площадь сечения ,проходящего через боковое ребро и меньшую диагональ основания. S=d*H=6*10=60 см2
ответ 60 см2
1.найдите площадь полной поверхности цилиндра
РЕШЕНИЕ
альфа (a)
высота цилиндра Н=R*tg(a)
длина окружности основания L=2pi*R
площадь боковой поверхности Sбок=H*L=R*tg(a)*2pi*R=2pi*R^2*tg(a)
площадь основания Sосн=pi*R^2
площадь полной поверхности S=2Sосн+Sбок=2pi*R^2 +2pi*R^2*tg(a)=2pi*R^2(1+tg(a))
ответ 2pi*R^2(1+tg(a))
2.найдите площадь сечения призмы
РЕШЕНИЕ
площадь боковой поверхности Sбок=240 см
боковое ребро прямой призмы (высота) H= 10 см
периметр основания Р=Sбок/H=240/10=24 см
в основании РОМБ, сторона ромба b=P/4= 6 см
ромб с острым углом 60 градусов.-значит он состоит из двух равностороннних треугольников-, у которых одна сторона-это меньшая диагональ d=b= 6 см
меньшие дигонали и боковые ребра являются сторонами искомого сечения
площадь сечения ,проходящего через боковое ребро и меньшую диагональ основания. S=d*H=6*10=60 см2
ответ 60 см2
Lo=12,6π;. P∆=18,9√3;. S∆=29,7675
Объяснение:
Дано: ∆АВС-правильный,
R=6,3
Lo=?;. P∆=?;. S∆=?.
Решение: центр окружности лежит на пересечении медиан ∆, они же высоты и биссектрисы этого ∆, =>
а-сторона ∆, h=а√3/2; R=2/3*h
(медиана делится точкой пересечения в соотношении 2:1, считая от вершины,
h=3R/2;. 3R/2=a√3/2;. a=3R/√3
a=√3R
Lo=2πR;. Lo=2π*6,3=12,6π
P∆=3a=3√3R;. P∆=3√3*6,3=18,9√3
S∆=1/2*a^2*Sin60=1/2*√3/2*a^2=√3/4a^2=√3/4(√3R)^2=3√3/4*R^2
S∆=3√3/4*6,3^2=29,7675=
=29, 307/400 запись целая часть, числитель/знаменатель