ВН=h -высота параллелограмма, ВD - другая диагональ параллелограмма. Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х. Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см². Высота ВН разделила ΔАВD на два треугольника с одной высотой h. Определим площадь каждого из этих треугольников. S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh. S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh Сумма площадей этих треугольников равна площади ΔАВD=30 см². 1,5хh+хh=30, 2,5хh=30, h=30/2,5х=12/х. Вычислим площадь ΔАВМ. S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см². ответ: 18 см².
Треугольник не может быть равносторонним, чтобы бы он был равносторонним все его углы должны быть равны 60 градусам, а у нас один угол 45, другой 90(потому что прямоугольный, угол прямой = 90) Нарисуем треугольник АВС, где А = 90 градусов. Угол С дан, находим угол В. Зная, что сумма углов в треугольнике равна 180, находим угол В. 180-90-45=45 Угол В=45 градусов, это значит что в треугольнике два угла равны, а если два угла равны, значит треугольник равнобедренный, то есть стороны тоже равны. Если АВ равен 4, то и АС = 4. Нужно найти ВС. ВС у нас в данном случае гипотенуза. Воспользуемся формулой пифагора: a^2+b^2=c^2, где а и в катеты, а с - гипотенуза 4*4+4*4=с^2 16+16=с^2 32=с^2 отсюда с = корень из 32( можно оставить и так, а можно вытащить из под корня) с=5 * корень из 7
.......................
Объяснение:
Теорема Пифагора