Правильное условие:
В треугольнике ABC AB=√21, BC=3√21. Биссектриса внешнего угла треугольника при вершине B пересекает прямую AC в точке P, угол APB равен 30°. Найдите BP.
Внешний угол треугольника равен сумме двух других не смежных с ним.
Пусть ∠CAB = y; ∠BCA = x.
Тогда внешний угол при вершине B равен x+y.
Биссектриса делит угол пополам, поэтому ∠ABP =
По свойству внешнего угла из ΔAPB имеем:
∠CAB = ∠APB+∠ABP;
y = 30°+
2y = 60°+x+y;
y = 60°+x = ∠CAB.
В ΔABC, по теореме синусов, получим равенство:
3√(21)·sin(x) = √(21)·sin(60°+x);
3sin(x) = sin(60°)·cos(x)+cos(60°)·sin(x);
3sin(x) = ·cos(x)+ ·sin(x);
6sin(x)-sin(x) = 5sin(x) = √(3)·cos(x);
Если cos x = 0, то sin x = 0, но синус и косинус не могут одновременно равняться нулю, тогда поделим на cos x ≠ 0;
tg(x) = .
Найдём sin(x):
По основному тригонометрическому тождеству:
sin(x) = +√(3/28) т.к. 0 < x < 180°, как угол треугольника.
По теореме синусов в ΔCPB:
ответ: 9.
2)Проведем из вершины C высоту CH1 к стороне AD, затем AH и H1D обозначим буквой x, они будут являться катетами прямоугольных треугольников ABH и CH1D.
3)Составим уравнение AD=BC+2x, т.к. HH1=BC
2x=AD-BC
x=21
4) Рассмотрим треугольник ABH:
AB=29( по условию);
AH=21( по доказанному);
AB^2= AH^2+BH^2
BH^2=841-441
BH=20
5)S= 0.5* ( 7+49) * 20
S=560
ответ: 560