Дано: равнобедренная трапеция ABCD, P - середина AB, F - середина CD, BC = 4см, AD = 8см, периметр трапеции OPBC = 13см. Найти: периметр трапеции AOFD. Решение. 1) PF - средняя линия трапеции → PO = BC/2 = 4см/2 = 2см, OF = AD/2 = 8см/2 = 4см 2) Периметр OPBC(13см) = OP(2см)+PB+BC(4см)+CO → PB+CO = 13см-6см = 7см 3) PB=FD, т.к. средняя линия PF соединяет середины боковых сторон в равнобедренной трапеции; CO=AO, т.к. средняя линия PF делит диагональ AC на равные отрезки по теореме Фалеса → Периметр AOFD = (FD+AO)(7см)+OF(4см)+DA(8см) = 19см ответ: 19см.
Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см