Объяснение:
1.Градусная мера дуги, на которую опирается центральный угол, равна 80 °. Определить градусную меру этого угл
а) 120° б) 80° в) 40°г) 50°
Центральный угол равен градусной мере дуги, на которую опирается. Поэтому ответ б) 80 градусов
2.Градусная мера центрального угла равна 120 °. Определить градусную меру дуги, на которую он опирается.
Из аналогичных соображений ответ г) 120 градусов.
а) 160° б) 90° в) 60°г) 120°
3.Градусная мера вписанного угла равна 140 °. Определить градусную меру дуги, на которую он опирается.
Вписанный угол равен половине градусной меры дуги на которую опирается. Поэтому градусная мера дуги равна 140*2 = 280 градусов. ответ в) 280 градусов.
а) 100° б) 70° в) 280°г) 140°
4.Градусная мера дуги, на которую опирается вписанный угол, равна 90°.Определить градусную меру этого вписанного угла.
Из аналогичных соображений, вписанный угол равен половине градусной меры дуги, на которую опирается. Следовательно, угол равен 90/2 = 45 градусов. ответ б) 45 градусов.
а) 100° б) 45° в) 180°г) 90°
5.Определить градусную меру угла, вписанного в окружность, если соответствующий ему центральный угол равен 126 ° .
Центральный угол равен градусной мере дуги, на которую опирается, а вписанный угол половине дуги. Следовательно, вписанный угол равен половине центрального угла, опирающегося на ту же дугу. ответ а) 63 градуса.
а) 63° б) 252° в) 180°г) 126°
6.Определить градусную меру центрального угла окружности, если градусная мера соответствующего ему вписанного угла равна 40 ° .
Из аналогичных рассуждений, центральный угол в 2 раза больше вписанного угла, опирающегося на ту же дугу. ответ г) 80 градусов.
а) 40° б) 20° в) 140°г) 80°
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.