Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Cм. рисунок и обозначения в приложении По теореме косинусов (2√3)²=6²+х²-2·6·х·cos 30° 12=36+x²-6√3·x=0 x²- 6√3·x+24=0 D=108-96=12 x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника. Углы параллелограмма 60° и 120°
если х=4√3 то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали) 6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60° второй угол параллелограмма 120° см. рисунок 2 ответ 120° и 60°
ответ: Угол DOM=69°
Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Из суммы углов треугольника
Угол DOM=180°-∠ОМD-∠МDО=180°-45°-66°=69°