М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sasha60503
sasha60503
28.02.2021 11:20 •  Геометрия

решить, просто вставить нужное


решить, просто вставить нужное

👇
Открыть все ответы
Ответ:
Taticyan707
Taticyan707
28.02.2021
Дано: АВСD - ромб, S = 96 см², BD = 4x, AC = 3x,
Знайти: Pabcd.
      Решение:
Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см² 
S= \dfrac{d_1\cdot d_2}{2} \\ 2S=d_1\cdot d_2 \\ 2\cdot96=3x\cdot4x \\ 12x^2=192 \\ x^2=16 \\ x=4

Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.

Діагоналі АС і BD  перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см.
С прямокутного трикутника АОВ:
АО = 6 см, ВО = 8см. 
За т. Піфагора:
AB^2=AO^2+BO^2 \\ AB= \sqrt{AO^2+BO^2} = \sqrt{6^2+8^2} =10\,\, cm
Периметр ромба дорівнює добутку 4 сторін
P_{abcd}=4a=4\cdot10=40\,\, cm

Відповідь: 40 см.
Знайдіть периметр ромба,діагональ якого відноситься як 3: 4,а площа дорівнює 96 см.квадратних
4,8(10 оценок)
Ответ:
Milka20060711
Milka20060711
28.02.2021

Властивість 1. Висота прямокутного трикутника рівна проекції катетів на гіпотенузу. Мовою формул, твердження еквівалентне запису
СD*СD = АD ∙ DВ

Властивість 2. Катет прямокутного трикутника є середнім пропорційним гіпотенузі і проекції цього катета на гіпотенузу
AC*AC=AB*AD;
BC*BC=AB*BD.
Добре розберіться, за що відповідають формули –наведені далі задачі будуть для Вас більш зрозумілі.

 

Задача 1. Висота прямокутного трикутника ділить гіпотенузу на два відрізки 4 см і 9 см. Знайдіть висоту трикутника, проведену до гіпотенузи та його площу.

Розв'язання: Виконаємо побудову трикутника за даними

За 1 властивістю висота рівна

Гіпотенузу знаходимо через суму відрізків
AB=AD+BD=4+9=13 (см).
Площа трикутника рівна половині добутку основи на висоту. Виконуємо обчислення

Відповідь: Площа рівна 39 сантиметрів квадратних.

 

Задача 2. Площа прямокутного трикутника рівна 6 метрів квадратних. Знайти проекції катетів на гіпотенузу, якщо відомо, що один катет рівний 4 м.

Розв'язання: Виконаємо допоміжну побудову трикутника

Через відому площу обчислимо другий катет трикутника

За теоремою Піфагора знаходимо гіпотенузу

Через пропорційні відрізки знаходимо проекції

В такий самий б знаходимо проекцію другого катета

Легко переконатися, що сума проекцій рівна гіпотенузі трикутника

Відповідь: проекції катетів рівні 9/5 см та 16/5 см.

 

Задача 3. Один катет прямокутного трикутника рівний 8 см, а проекція другого катета на гіпотенузу – 3,6 см. Знайдіть другий катет та гіпотенузу трикутника.

Розв'язання: Зобразимо трикутник із вхідними даними.

Позначимо AD=x. Згідно другої властивості маємо

Розкриваємо дужки

Квадратне рівняння обчислюємо через дискримінант

Корені рівняння рівні

Корінь x=-10 не відповідає фізичній суті задачі.
Знаючи другу проекцію AD=6,4 см гіпотенузу знаходимо через суму проекцій
AB=3,6+6,4=10 (см.)
За теоремою Піфагора обчислюємо другий катет

Відповідь: катетів рівний 6 см, гіпотенуза – 10 см.

Подібних задач на висоту, гіпотенузу, бісектрису трикутника в ін
4,5(79 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ